The cooperativity index in a metallopolymer can be thought of as an estimation of the level of available water in nature. In a river, the water molecules can only feed immediate surroundings. Those in an aqueduct possess sufficient potential energy to extend this beneficial effect to wider areas. Twenty centuries ago, the Romans exploited this concept for extending their settlement in Western Europe. A reliable access to allosteric cooperativity indexes might push host–guest chemistry toward unexplored areas. More information can be found in the Full Paper by C. Piguet et al. (DOI: 10.1002/chem.201600857).

 

The basic concept of allosteric cooperativity used in biology, chemistry and physics states that any change in the intermolecular host–guest interactions operating in multisite receptors can be assigned to intersite interactions. Using lanthanide metals as guests and linear multi-tridentate linear oligomers of variable lengths and geometries as hosts, this work shows that the quantitative modeling of metal loadings requires the consideration of a novel phenomenon originating from solvation processes. It stepwise modulates the intrinsic affinity of each isolated site in multisite receptors, and this without resorting to allosteric cooperativity. An easy-to-handle additive model predicts a negative power law dependence of the intrinsic affinity on the length of the linear metallopolymer. Applied to lanthanidopolymers, the latter common analysis overestimates cooperativity factors by more than two orders of magnitude.


Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024